Outline

1 Introduction
2 Performance characteristics
3 Comparator Gain and Response Time
4 Offset Cancellation Techniques
5 Comparators with Hysteresys
6 Latched Comparators
7 Power Consumption
Definitions

- A comparator detects whether its input is larger or smaller than a reference voltage

![Comparator Diagram]

- The output of a comparator is a digital signal ("1" or "0" level)
- Overdrive ➔ If the input of the comparator is driven with a voltage larger than the minimum voltage required to achieve the correct digital level, the comparator is overdriven

Use of comparators

- Threshold detector
- Zero-crossing detector
- High immunity noise digital line receiver
Performance characteristics

- **Voltage gain** (A_v) → Differential DC gain of a comparator
- **Input offset** (V_{os}) → Voltage that must be applied to the input to obtain a transition between the low and the high state
- **Response time** (t_r) → Time interval between the instant when a step input is applied and the instant when the output reaches the corresponding logic level (depends on the input step amplitude)

![Graph showing the relationship between input step amplitude and response time.](image-url)
Performance characteristics

- **Overdrive recovery** ➔ Time interval required to recover from overdrive (the response time, for a given input step amplitude, depends on how much the comparator was previously overdriven)

![Graph showing Overdrive recovery](image)

![Graph showing Overdrive Voltage vs Response Time](image)
Performance characteristics

- **Latching capability** ➔ A latch command and an un latch command store and release the output logic state
- **Power supply rejection ratio (PSRR)** ➔ Transfer function between the supply rails and the output of the comparator
- **Power consumption** ➔ Power dissipated at DC (static) and during comparisons (dynamic)
- **Hysteresis** ➔ The threshold voltage for rising input signals is different from the threshold voltage for falling input signals
Comparador Gain and Response Time

Basic considerations

- A comparator is basically an open loop gain stage
- Any gain stage can be used as comparator, from a simple inverter to a complex operational amplifier
- If required a latch can be connected at the output of the gain stage

Key issues in comparator design

- Gain obtained by using a single complex stage or by using a cascade of simple stages (stability is not an issue)
- Offset cancellation
- Power supply rejection
- Overdrive recovery
- Power consumption
Comparator Gain and Response Time

Comparator gain vs bandwidth trade-off

- Due to the finite bandwidth of the circuit V_{out} reaches $A_v V_{in}$ with a delay with respect to the input step (response time t_r)
- The same values of V_{out} and t_r are obtained by using stages with different bandwidths and DC gains
Comparator Gain and Response Time

Single-stage comparator

\[t \ll \tau = R_L C_L \implies v_{out} = g_m R_L v_{in} \left(1 - e^{-\frac{t}{\tau}} \right) \approx v_{in} \frac{g_m}{C_L} t \]

Multi-stage comparator \((n\) stages)

\[t \ll \tau = R_L C_L \implies v_{out} \approx v_{in} \left(\frac{g_m}{C_L} \right)^n \frac{t^n}{n!} \]
Comparator Gain and Response Time

The graph illustrates the relationship between the output voltage ratio V_{out}/V_{in} and the time constant t_{gm}/C_L for different values of n. The curves for $n = 1$, $n = 2$, and $n = 3$ are shown, each representing a different scenario or design parameter.

Franco Maloberti – CMOS Comparators, 2009
Comparator Gain and Response Time

- For a given gain, it exists an optimum number of stages which gives the best response time
 \[A_{v,n} = \frac{(n+1)^n}{n!} \implies t_{r,n} = (n+1) \frac{g_m}{C_L} \]

- For a small gain we achieve a smaller response time with a single stage than with several stages
- For a large gain we achieve a smaller response time with several stages than with a single stage

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{v,n})</td>
<td>2</td>
<td>4.5</td>
<td>10.6</td>
<td>26</td>
<td>64.8</td>
<td>163</td>
<td>416</td>
<td>1067</td>
<td>2755</td>
</tr>
</tbody>
</table>
Offset Cancellation Techniques

Autozero technique

- **Basic idea** ➔ Sample the offset during one clock phase and subtract it from the signal during the other clock phase
- Two non-overlapping clock phases are required
 - Phase 1 ➔ Autozero
 - Phase 2 ➔ Comparison

![Autozero circuit diagram](image)
Offset Cancellation Techniques

- Time-domain analysis
 \[V_i(T) = V_+(T) - V_-(T) = V_{os}(T) - [V_{in}(T) + V_{os}(0)] \]

- If \(V_{os} \) varies slowly with respect to \(T \), then \(V_{os}(T) \approx V_{os}(0) \)
 \[V_i(T) \approx -V_{in}(T) \]

- Frequency-domain analysis (Laplace transform)
 \[V_i(s) = V_{in}(s) + V_{os}(s) \left(1 - e^{-sT} \right) \]
 \[H_{os}(s) = 1 - e^{-sT} = 2j e^{-sT/2} \sin \left(\frac{sT}{2} \right) \]

- The low frequency components of \(V_{os} \) are canceled
Offset Cancellation Techniques

\[H_{\text{OS}}(f) \]

\(f_T \)
Offset Cancellation Techniques
Autozero in single-stage comparators

During phase 1 the gain stage is in unity-gain closed-loop configuration and V_{os} is sampled on capacitor C

During phase 2 the gain stage is in open-loop configuration and the offset-free comparison is performed

Capacitor C represents an output load of the gain stage during phase 1

Stability of the gain stage during phase 1 has to be considered
Offset Cancellation Techniques

- The finite gain A_v of the gain stage produces a residual offset error

$$V_{os,res} = V_{os} - V_{os} \frac{A_v}{1 + A_v} = V_{os} \frac{1}{1 + A_v}$$

- The clock feedthrough at the opening of S_1 determines an equivalent offset error ($V_{os,ck}$)

$$V_{os,res} = V_{os} \frac{1}{1 + A_v} + V_{os,ck}$$
Offset Cancellation Techniques

- The charge injected by the switch S_1 is integrated onto C and the input capacitance of the gain stage.
- The input signal is attenuated by the factor $\frac{C}{C + C_{in}}$.
- In order to reduce the attenuation and the equivalent offset $V_{os,ck} = \frac{Q_{ck}}{C + C_{in}}$, C must be chosen much larger than C_{in}.
- If complex gain stages are used it is necessary to compensate the stage during the autozero phase with capacitor C_c.

With the autozero technique the comparator can only detect zero-crossing.

\[V_{in} \rightarrow S_3 \rightarrow C \rightarrow \text{Comparator} \rightarrow S_4 \rightarrow V_{out} \]

\[V_{os} \rightarrow S_2 \rightarrow \text{Comparator} \rightarrow \text{Comparator} \rightarrow C_c \]
The offset is canceled and the input voltage of the comparator during the comparison phase becomes

\[V_+ - V_- = -(V_{in} - V_{ref}) + V_{os, res} \]

The comparator operates with the same input common-mode voltage independently of the value of \(V_{ref} \).
The gain of the comparator is \(A_v = A_{v,1} A_{v,2} \cdots A_{v,n} \)

The offset of the third stage is referred to the input attenuated by the factor \(A_{v,1} A_{v,2} \) → It is negligible

The input referred offset without autozero is

\[
V_{os} = V_{os,1} + \frac{1}{A_{v,1}} V_{os,2}
\]
Offset Cancellation Techniques

- The residual offset due to finite gain of A_1 is sampled on C_2 and canceled.
- The overall residual offset with autozero is

$$V_{os, res} = V_{os, 2} \frac{1}{A_{v, 1} (1 + A_{v, 2})}$$

- The clock feedthrough at the opening of S_1 and S_2 determines two equivalent offset errors at the input of A_1 and A_2 ($V_{os, ck, 1}$ and $V_{os, ck, 2}$)

$$V_{os, res} = V_{os, 2} \frac{1}{A_{v, 1} (1 + A_{v, 2})} + V_{os, ck, 1} + V_{os, ck, 2} \frac{1}{A_{v, 1}}$$

- To reduce the residual offset due to clock feedthrough → Open S_1 before S_2
Offset Cancellation Techniques

- S_1 is driven with phase 1, while S_2 and S_3 with phase 1d.
- The charge injected by S_1 is collected on C_1 and the equivalent offset is amplified by $A_{v,1}$, but since S_2 is still on, the output voltage of A_1 is sampled and stored onto C_2.
- $V_{os,1}$ and $V_{os,ck,1}$ are completely canceled, while $V_{os,2}$ and $V_{os,ck,2}$ are referred to the input attenuated by a factor $A_{v,1}$.

$$V_{os,res} = V_{os,2} \frac{1}{A_{v,1} (1 + A_{v,2})} + V_{os,ck,2} \frac{1}{A_{v,1}}$$
Offset Cancellation Techniques

- Each gain stage can be implemented with a CMOS inverter \((A_v = 5 \div 20) \)

During the autozero phase \(M_1, M_2, M_3 \) and \(M_4 \) are diode-connected \(\rightarrow \) The current consumption is not controlled

- Large \(W/L \) for \(M_1, M_2, M_3 \) and \(M_4 \) \(\rightarrow \) Fast inverters with large transconductance \(\rightarrow \) Low response time but large power consumption
Offset Cancellation Techniques

Fully-differential comparators

- In a fully-differential comparator, the clock feedthrough due to the opening of S_1 and S_2 produces a common mode signal.
- The effect is attenuated by the common-mode rejection ratio (CMRR).
- Residual offset is only due to mismatches in the fully-differential structure.
Offset Cancellation Techniques

- Fully-differential comparator gain stages
 - Stages with very low gain
 - Stages with low gain and common-mode feedback
 - Conventional fully-differential amplifiers

- Stages with very low gain
 - The common-mode feedback is not required [+]
 - The parasitic capacitances $C_{gs,3,4}$ load the output node [−]

![Comparator Circuit Diagram]

Franco Maloberti – CMOS Comparators, 2009 24/43
Offset Cancellation Techniques

- Stages with low gain and common-mode feedback
 - Low capacitive load at the high impedance nodes [+]
 - Common-mode feedback is required [−]
Offset Cancellation Techniques

Vin
VB1
VB2
Vout
M3
M1 M2
M4
M5 M6
M7
M8
M9 M10
M11
M12
Offset Cancellation Techniques

Offset compensation by auxiliary input stage

- **Basic idea** ➔ Store the offset at the output of the gain stage and use it in feedback connection to cancel the input offset

- During phase 1, the inputs of \(A_1 \) are short-circuited, the output of \(A_1 \) becomes \(A_{v,1} V_{os,1} \) and the output of the comparator is

\[
V_{out} = V_{os,1} \frac{A_{v,1}}{1 + A_{v,2}} + V_{os,2} \frac{A_{v,2}}{1 + A_{v,2}}
\]
Offset Cancellation Techniques

- During phase 2, the residual input referred offset is

\[V_{os, res} = V_{os,1} \frac{1}{1 + A_{v,2}} + V_{os,2} \frac{A_{v,2}}{(1 + A_{v,2}) A_{v,1}} \approx \frac{V_{os,1}}{A_{v,2}} + \frac{V_{os,2}}{A_{v,1}} \]

- If \(S_1 \) is opened while \(S_2 \) is still closed, the additional offset caused by the clock feedthrough from \(S_1 \) is attenuated by a factor \(1 / (1 + A_{v,2}) \)

- When \(S_2 \) is opened the clock feedthrough produces an equivalent input referred offset \(V_{os,az} \) on \(C_{az} \), which referred to the input becomes

\[V_{os,ck} = V_{os,az} \frac{A_{v,2}}{A_{v,1}} \]

- If \(A_{v,1} \) is larger than \(A_{v,2} \), then \(V_{os,ck} \) is reduced (optimal choice is \(A_{v,2} = \sqrt{A_{v,1}} \))
Offset Cancellation Techniques

- Implementation with double differential stage

\[\frac{A_{v,1}}{A_{v,2}} = \frac{g_{m1,2}}{g_{m6,7}} \]
Comparators with Hysteresis

- When in a comparator the input signal is near the threshold voltage and varies slowly with respect to the response time, noise can produce oscillations in the output.
- Hysteresis ➔ The threshold voltage when the output changes from “0” to “1” ($V_{\text{ref}, H}$) is larger than the threshold voltage when the output changes from “1” to “0” ($V_{\text{ref}, L}$).
Comparators with Hysteresys

Franco Maloberti – CMOS Comparators, 2009 31/43
Comparators with Hysteresis

- If $V_{in} \ll V_{ref}$ then M_1 and M_3 are on, M_2, M_4 and M_{11} are off, M_{10} is in the triode region $\Rightarrow V_{out} = 0$
- If $V_{in} \gg V_{ref}$ then M_2 and M_4 are on, M_1, M_3 and M_{10} are off, M_{11} is in the triode region $\Rightarrow V_{out} = 1$
- If $V_{out} = 0$, $V_{in} \cong V_{ref}$ and rising, when $I_2 > \beta I_1 \Rightarrow M_4$ turns on, M_3 turns off and $V_{out} = 1 \Rightarrow V_{ref,H} > V_{ref}$
- If $V_{out} = 1$, $V_{in} \cong V_{ref}$ and falling, when $I_1 > \beta I_2 \Rightarrow M_3$ turns on, M_4 turns off and $V_{out} = 0 \Rightarrow V_{ref,L} < V_{ref}$
- The hysteresis is controlled by the current mirror ratio β

$$\beta = \frac{W_{10}L_3}{L_{10}W_3} = \frac{W_{11}L_4}{L_{11}W_4}$$

- Transistors M_{10} and M_{11} create a positive feedback loop that, besides introducing hysteresis, makes the response time of the comparator faster
Latched Comparators

- In latched comparators, comparison is performed at given time instants (controlled by the *Latch* signal) and the result is maintained until the next comparison is performed.
- Latched comparators are typically used in sampled-data systems (e.g., data converters), where the latch signal is the clock.
- A latched comparator consists of a gain stage followed by a latch stage and eventually a set-reset flip-flop to hold the output signal while the latch is reset (*Latch* signal).
- The latch stage is based on a positive feedback loop ➔ Very fast response time.

Gain Stage Latch Stage Set-Reset Flip-Flop

In → Out

Latch
During the reset phase (Latch) M_1, M_3 and M_2, M_4 form two inverters with active load.

The parasitic capacitances at nodes V_{out^+} and V_{out^-} are precharged to the desired logic signals.
Latched Comparators

- During the latch phase (Latch) the positive feedback is enabled and the latch reaches a stable state.
- The state of the latch depends on the logic level precharged in the parasitic capacitances.
- Thanks to the regenerative behavior of the positive feedback loop the response time is very short even with small input signals.
- The offset of the latch cannot be canceled with autozero or auxiliary stages.
- To reduce the offset transistors M_5 and M_6 must have relatively large area (WL).
- Since the latch is reset before each comparison overdrive recovery is not an issue.
Latched Comparators

Differential stage with regenerative load

- The input signal unbalances the currents flowing in M_1 and M_2
- When the *Latch* signal is applied, in the regenerative loop (M_3 and M_4) the transistor with the largest current wins
Latched Comparators

Latch stage with double regenerative loop

- Double positive feedback loop → Fast response
- One positive feedback loop strengthens the other
Latched Comparators

Combination between gain stage and latch

\[V_{in^+} \quad V_{in^-} \quad V_{out^+} \quad V_{out^-} \quad V_{B1} \quad V_{B2} \]

\[M_1 \quad M_2 \quad M_3 \quad M_4 \quad M_5 \quad M_6 \quad M_7 \quad M_8 \quad M_9 \]

Latched Comparators

Combination between gain stage and latch

\[V_{in^+} \quad V_{in^-} \quad V_{B2} \quad V_{B1} \quad V_{out^+} \quad V_{out^-} \]

\[M_1 \quad M_2 \quad M_3 \quad M_4 \quad M_5 \quad M_6 \quad M_7 \quad M_8 \quad M_9 \]

Franco Maloberti – CMOS Comparators, 2009 38/43
Latched Comparators

Complete latched comparator

Gain Stage Double Latch Stage Set-Reset Flip-Flop
The voltage at the output of the first stage is

\[V_o(t) = \frac{g_{m,1}}{C_1} \int_0^t V_{in}(t) \, dt \]

The voltage swing at the output of the second stage is

\[V_{out}(t) = \frac{g_{m,2}}{C_2} \int_0^t V_o(t) \, dt \]
Power Consumption

- For constant or slowly varying signal at the end of the comparison phase \((\gamma/f_{ck})\) the output voltage \(V_{out}\) is

\[
V_{out} \left(\frac{\gamma}{f_{ck}} \right) = \frac{1}{2} V_{in} \frac{g_{m,1} g_{m,2}}{C_1 C_2} \left(\frac{\gamma}{f_{ck}} \right)^2
\]

- MOS transistors in strong inversion

\[
g_m = \sqrt{\frac{2\mu C_{ox} I_D W}{L}}, \quad I_D > 2n\mu C_{ox} \frac{W}{L} \left(\frac{kT}{q} \right)^2
\]

- MOS transistors in weak inversion

\[
g_m = \frac{q I_D}{n k T}, \quad I_D < 2n\mu C_{ox} \frac{W}{L} \left(\frac{kT}{q} \right)^2
\]
Power Consumption

- If the input voltage of a gain stage exceeds the critical value $V_{\text{crit}} = nkT/q$ or $V_{\text{crit}} = (V_{\text{GS}} - V_{\text{th}})/2$, the output current saturates to the maximum value $I_{\text{max}} = 2I_D$

- To achieve a given value of V_{out} the current in the second stage must be

$$I_{D,2} > \frac{V_{\text{out}} C_2 f_{\text{ck}}}{2\gamma}$$

- The current in the first stage can be obtained from

$$\begin{cases} g_{m,1} > \frac{V_{\text{crit}} C_1 f_{\text{ck}}}{V_{\text{in,min}}} & , V_{\text{in,min}} < V_{\text{crit}} \\ I_{D,1} > \frac{V_{\text{crit}} C_1 f_{\text{ck}}}{2\gamma} & , V_{\text{in,min}} > V_{\text{crit}} \end{cases}$$

- The obtained values of $I_{D,1}$ and $I_{D,2}$ lead to the minimum theoretical value of the comparator power consumption

- In practical designs a safety margin has to be considered
References

Main textbook

Other references