Light emission in crystalline silicon (c-Si) has been a subject of intense and thorough research over the past two decades. In fact, although silicon is an indirect band gap semiconductor, the development of an all-silicon device showing efficient light emission at room temperature would entail enormous benefits. Many different strategies have been explored to make silicon an efficient infrared emitter at strategic telecom wavelengths, including doping with rare-earth atoms, or exploiting optically active structural defects. Though very promising, devices based on silicon sub-band gap luminescence are still impractical because emission intensity is strongly quenched for temperatures above ≈100 K and becomes almost undetectable at room temperature. In such devices, enhancement of light emission relies on the combination of two complementary strategies, defect engineering and device engineering. On the one hand, the former route aims to increasing the efficiency of active centers by reducing nonradiative recombination. On the other hand, field-confining photonic nanostructures such as high-Q photonic crystal (PhC) cavities can increase light emission through the Purcell effect and optimization of the light extraction efficiency. Enhanced light emission and low-threshold lasing has been extensively reported in III-V based and in silicon-compatible devices. However, their application to increasing light emission from c-Si has been limited to the narrow spectral region of indirect band-edge recombination at 1.1 μm wavelength.

In this letter, we report the observation of enhanced room-temperature photoluminescence (PL) from silicon PhC nanocavities with resonant modes in the range 1.3–1.6 μm, well below the Si band gap. The broad sub-bandgap emission feeding the cavity modes is attributed to optically active defects introduced during the manufacturing process of the silicon-on-insulator (SOI) wafers.

Silicon PhC nanocavities consisting of three-missing holes in a triangular lattice of air-holes (L3) were fabricated by means of e-beam lithography and reactive ion etching on a SOI wafer (220 nm thick silicon on 2000 nm of silica-purchased from SOITEC). The fabrication procedure is the same as that reported in Ref. 15. Several L3 cavities with a lattice constant of a=420 nm and a hole radius of r/a =0.29 were fabricated. To increase the light emission in the vertical direction, far-field optimization was applied by modifying the diameter of the holes around the PhC cavities by a quantity Δr=±18 nm and −18 nm (see Ref. 15). Furthermore, optimization of the radius and position of the holes adjacent to the cavity was performed in order to obtain high Q factors. A scanning electron microscope (SEM) image of a typical L3 PhC nanocavity is shown in inset of Fig. 1.

Confocal micro-PL (µPL) from the planar PhC nanocavities was measured at variable temperature in the 1.0–1.6 μm spectral range using a highly stable continuous-flow He cryostat (Janis ST500). The samples were excited with a Nd:YAG laser at λ=532 nm, which was focused to a spot of ~1 μm diameter at the center of the PhC nanocavi-
ties by means of a high numerical aperture (NA=0.8) microscope objective. Light emitted from the nanocavities was then collected through the same objective, filtered by a pinhole and sent to a grating spectrometer equipped with an InGaAs array detector. The use of high NA collection optics and careful alignment of the sample are essential for observing the very weak PL signals, as reported below.

Figure 1 shows the room-temperature \(\mu \)PL spectra collected for L3 PhC nanocavities with \(\Delta r=+18 \) nm, 0 nm, +18 nm (green, blue, and red curve, respectively). Sharp resonant peaks, corresponding to the excitation of cavity modes, are observed to dominate over an almost flat and weak background emission. In particular, we notice that light-emission at the fundamental cavity mode, occurring at \(+18 \) nm, is as compared to the unpatterned Si membrane. Focusing our attention only on the fundamental mode around \(+18 \) nm as a function of excitation power. A strong reduction in electromagnetic density of states in the photonic stop-band (extending from 1.27 to 1.6 \(\mu m \), see the top panel in Fig. 2). The introduction of additional active recombination centers at the PhC sidewalls by the etching process is also possible. When the far-field optimized L3 nanocavities are considered, a very strong enhancement of the emission is observed as compared to the unpatterned membrane. Focusing our attention only on the fundamental cavity mode around \(+18 \) nm, the enhancement factors can be estimated as \(\alpha=300, 60, \) and 250 for \(\Delta r=+18 \) nm, 0 nm, and \(-18 \) nm, respectively. Such high values cannot be explained simply by an increased extraction efficiency and represent a clear evidence of Purcell effect acting on the emitting centers coupled to the PhC nanocavity. The Purcell factor \(F_P \) can be estimated using simple geometrical considerations on the collection efficiencies \(\eta_M \) and \(\eta_C \) from the bare Si-membrane and the PhC nanocavity, respectively. The collection efficiency for the unpatterned Si-membrane is \(\eta_M=1-\cos(\sin^{-1}(NA/n))=0.036 \), where \(n=3 \) is the slab effective refractive index and \(NA=0.8 \). Notice that, for \(NA=1 \), the collection efficiency coincides with the emission probability into the radiative modes, calculated, e.g., in Ref. 20. On the other hand, an upper limit for the collection efficiencies from our PhC nanocavities is estimated from finite-difference time-domain calculations as \(\eta_C=0.9, 0.2, 0.8 \) for \(\Delta r=+18 \) nm, 0 nm, \(-18 \) nm, respectively.

Since the maximum increase in extraction efficiency (i.e., without any Purcell effect) is \(\eta_C/\eta_M \), the experimental Purcell factor is then given by \(F_P=\alpha \eta_M/\eta_C \), yielding very similar values of \(F_P=12 \) in each case. This is consistent with the experimental observation that all the three different cavities display almost the same \(Q=3\times10^5 \) when measured in \(\mu \)PL while independent resonant scattering spectra\(^{21}\) yield Q-factors of \(7.3\times10^7, 7.6\times10^7, 9.6\times10^7 \) for \(\Delta r=+18 \) nm, 0 nm, \(-18 \) nm, respectively, in agreement with theoretical values. To understand this discrepancy, we report in Fig. 3(a) the measured emission intensity and Q factor of the L3 nanocavity with \(\Delta r=+18 \) nm as a function of excitation power. A consistent reduction in the Q-factor is evident as the excitation power is raised from 20 \(\mu \)W up to 1 mW, which we attribute to free-carrier absorption (FCA) induced by the strong pump absorption at \(\lambda=532 \) nm. A similar behavior has been measured for all the cavities. Indeed, a marked blueshift of the nanocavity resonance wavelength is observed for increasing pump powers [Fig. 3(b)], indicating an increase in the mean free-carrier density in the Si slab.
demonstrates that Q-factors measured under nonresonant excitation are severely limited by FCA. Higher F_P values are then expected if much lower excitation powers than 500 μW are used in the μPL measurements, though a comparison with the very weak emission from the Si-membrane structures up to 300 K, where the measured normalized intensity shows a much stronger suppression as a function of temperature, being reduced 10-fold at room temperature. Assuming a simplified model in which the PL thermal quenching, i.e., nonradiative recombination, is governed by two energy levels separated by an activation energy E_A (as it is usually assumed for gap-levels in semiconductors), this data may be interpreted through an Arrhenius analysis by plotting the quantity $\ln[1/I_{PL}(T) - 1]$ versus $1/T$, as shown in Fig. 4(b). A linear fit of the high temperature tails of the temperature-dependent PL yields very similar activation energies for the on-resonance and the off-resonance PL as $E_A^{on}=23 \pm 2$ meV and $E_A^{off}=22 \pm 2$ meV, respectively. Following Ref. 23, since the two activation energies are the same, we can conclude that the persistence of high on-resonance PL values up to room temperature is a further indication of the Purcell effect, leading to an increased internal quantum efficiency due to a larger radiative recombination rate.

In summary, besides providing a useful tool for quick and easy characterization of widespread SOI-based nanostructures, our findings demonstrate the potential of PhC cavities in enhancing even very weak background emission from residual (unintentional) deep-centers in silicon. A much more intense light emission could then be expected by the intentional introduction of a small amount of optically active recombination centers such as dislocation-loops or point-defects in c-Si, opening the route toward the realization of all-silicon light emitting devices at telecom wavelengths.

This work was supported Era-NET NanoSci LECSIN project coordinated by F. Priolo and by the Italian Ministry of University and Research, FIRB Contract No. RBAP06L4AS. The fabrication was carried out in the framework of NanopIX (see http://www.nanophotonics.eu).