Design of Analog Blocks for Low-Voltage Switched Systems

P. Malcovati, H. Baltes
Physical Electronics Laboratory
ETH Zurich
ETH Hoengerberg, HPT H6
8093 Zurich, Switzerland
Tel +41 1 633 65 18 Fax 371 07 21
piero@iqe.phys.ethz.ch

U. Gatti
DRSC-SM
Italice Sit
20019 Settimo Milanese (Milano)
Italy
Tel +39 392 43888 241 Fax 43888 593
gatti@settimo.italtel.it

F. Maloberti
Department of Electronics
University of Pavia
Via Abbiadegrosso 209
27100 Pavia, Italy
Tel +39 382 505 205 Fax 422 583
franco@franco.unipv.it

ABSTRACT
Design of low-voltage CMOS analog circuits becomes particularly critical when switches are involved. To drive them into the on-state a gate voltage which is higher (or lower) than the handled signal by at least the threshold voltage is required. This strongly reduces the signal swing allowed. To overcome this problem a novel approach, the “switched” operational amplifier, has recently been proposed. The idea is very interesting but it suffers from a number of practical problems. In this paper we discuss existing solutions and we suggest a new implementation. Moreover, we propose a new approach, the “switched” unity gain amplifier and we discuss the implementation of switched capacitor building blocks with this solution. Finally, we present simulation results for the proposed circuits and provide some design guidelines.

INTRODUCTION
Technological evolution and market requirements are pushing towards low voltage and low power integrated circuits. This need comes from technology shrink (which lowers the breakdown voltage of the devices) and from the increasing demand for portable (battery operated) systems. The most critical limitation of CMOS technologies in low-voltage design is the relatively high threshold voltage ($V_{th} \approx 0.7$ V). Unfortunately, V_{th} can not be reduced much while maintaining acceptable the leakage current of the transistors. Therefore, low-voltage operation in CMOS technology must be achieved using design techniques. In digital circuits we can use a supply voltage which is slightly higher than the thresholds, thus losing part of the noise margin. However, in analog circuits, especially when switches are involved, new solutions should be invented.

Two typical situations where low-voltage design is challenging are shown in Fig. 1: a sample and hold and a dumped switched capacitor (SC) integrator. The main problems that we have to face in the design of such circuits are the following: a) we should achieve a suitably wide input common mode range in the operational amplifier (OP-AMP) used in the sample and hold, b) we need a proper low (or high) input common mode range in the dumped integrator to allow a low (or high) value of V^*, c) we must ensure that all the switches can reach the on state under any operating conditions.

![Switched capacitor building blocks: sample and hold, dumped integrator](image)

Fig. 1 - Switched capacitor building blocks: sample and hold, dumped integrator

Recently new solutions for the above mentioned problems have been proposed [1] [2]. They are based on the “switched” operational amplifier principle. In this paper we will discuss the limits to these solutions, we will consider possible improvements and finally we will propose a novel approach based on a “switched” unity gain amplifier.

SWITCHED OPERATIONAL AMPLIFIER
The major limitation in low-voltage SC systems comes from the switches. The voltage that we have to apply to the gate in order to achieve the on state must be higher (or lower) than the channel voltage by more than V_{th}. If the switch is connected to a node whose voltage lies in-between the power supplies (for example the analog ground, V_{AG}, or the OP-AMP output node), this condition may not be satisfied. However, if we look at the schematic of the dumped integrator in Fig. 1 we see that this problem concerns only part of the switches, because some of them are (or can be) connected to voltages close to V_{SS} or V_{DG} (for example V^*) ensuring a satisfactory on-state, even without voltage elevators on board.

The idea behind the switched operational amplifier is to embed into the OP-AMP the critical switches connected to its output (for example S_1 or S_2). These switches open or close the connection between the output of the OP-AMP and the rest of the circuit. Therefore, to eliminate them while performing the same operation, we have to interrupt the signal path inside the OP-AMP and force its output to a high
impedance state.

OP-AMPS used in SC applications are usually transconductors (OTA) whose typical output stage is shown in Fig. 2a. In this case it is possible to interrupt the signal path by switching off the two current sources, M_1 and M_2, acting on the top and the bottom as shown in Fig. 2b. When the two transistors M_{SW1} and M_{SW2} are turned off the output of the OP-AMP is in the high impedance state, as required.

![Fig. 2 - Output stages: (a) conventional OP-AMP, (b) switched OP-AMP](image)

In order to further reduce it, therefore, we need to eliminate C_C.

![Fig. 4 - Simulated voltage across capacitor C_I during the on-off transition of the two-stage switched OP-AMP](image)

This was proposed in [1] using a two-stage OTA, as shown in Fig. 3. If we analyze this solution we encounter two drawbacks: asymmetric switching times of the two current sources, M_1 and M_2, from the on to off state may cause undesirable current injection into capacitor C_I. Moreover, because of the circuit topology, the switching times of M_6 and M_7 are also asymmetric. Therefore, we have an additional injection of current into C_I through the compensation capacitor (C_C).

In fact, the current in M_1 is interrupted immediately after the clock edge, while the current in M_2 and M_7 flows until their gate capacitances are discharged through the on resistance of M_{SW1}. Likewise, M_5 is switched off directly by M_3, while M_7 has a delay due to the time constant of the current mirror M_6-M_7.

These drawbacks can be reduced by opening S_3 (or S_4, depending on the configuration) before switching off the OP-AMP. However, a residual effect due to parasitic capacitance C_P is unavoidable. Fig. 4 shows a simulation of the voltage across C_I during the on-off transition. Although S_3 was switched off before the OP-AMP, and in spite of the small bias current (500 nA), we observe a residual error of about 4 mV, which is unacceptable for many applications. This error is mainly due to the effect of the compensation capacitor. In order to further reduce it, therefore, we need to eliminate C_C.

![Fig. 5 - Single-stage switched OP-AMP](image)

Table 1 - Simulated performances of the single-stage switched OP-AMP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$> 64 \text{ dB}$</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>80°</td>
</tr>
<tr>
<td>GBW ($C_I=2 \text{ pF}$)</td>
<td>500 kHz</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>0.2 V/\mu s</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>$7.5 \mu \text{W}$</td>
</tr>
<tr>
<td>Power Supply</td>
<td>1.5 V</td>
</tr>
<tr>
<td>Output Swing</td>
<td>1 V</td>
</tr>
</tbody>
</table>

A possible solution is shown in Fig. 5. It is a single-stage OP-AMP, which does not need an internal compensation capacitance, thus avoiding the above mentioned problems. A suitable DC gain is ensured by using a cascode topology in the output stage. In particular, in order to obtain the best trade-off between output voltage swing and gain, high-
compliance cascode mirrors were used [3]. Using this topology with a 1.5 V supply voltage, we can achieve a DC gain of more than 64 dB with an output voltage swing of about 1 V. Note that this value is only some tens of millivolts lower than in a conventional two-stage OP-AMP. The switching function is realized by transistors M_{SW1}, M_{SW2} and M_{SW3}. The simulated performances of the proposed low-voltage switched operational amplifier are summarized in Table 1.

THE PROBLEM OF S_2

The approach discussed in the previous section does not provide a solution for all the critical switches in the dumped SC integrator in Fig. 1. Switches S_2 and S_8 cannot be implemented using a switched operational amplifier. In [2] a solution to this problem is proposed. It is shown in Fig. 6.

Fig. 6 - Low-voltage switched capacitor integrator

In order to guarantee a satisfactory on state for S_2, we have to switch node V_I to V_{SS} instead of the analog ground (V_{AG}). Therefore, an extra charge is injected into the summing node of amplifier A_2, introducing an equivalent offset. However, in the proposed solution, capacitor C_{DC} injects the same amount of charge with the opposite sign, compensating this effect.

Consequently, S_2 is now connected to V_{SS} so it can be switched properly (using an n-channel transistor). Moreover, since the additional SC branch, C_{DC}, is switched between V_{SS} and V_{DD}, it is not critical (assuming that S_{DC1} is a p-channel transistor).

In the described solution the value of the analog ground voltage is defined by a SC divider (C_{DC}–C_I). Unfortunately, the divider is parasitic sensitive and the result of the partition depends on V_{DD}. Therefore, any noise affecting the supply voltage will correspond to noise in the equivalent analog ground.

THE SWITCHED UNITY GAIN AMPLIFIER

The novel solution that we propose to implement critical switches in low-voltage SC systems is shown in Fig. 7. In this case the switching function is associated to unity gain buffers (B_1, B_2 and B_3).

These devices behave like normal buffers when the clock signal is high but they act as open circuits (i.e. the output is in a high impedance state, as in the switched operational amplifier) when the clock signal is low.

Ideally switched unity gain amplifiers could be used directly to implement switches. Unfortunately, in reality they are affected by non-linearity, especially when rail to rail voltage swing is required. The solution to this problem is shown in Fig. 7: we introduced buffer B_4 in the feedback loop, node X is the output of the integrator while node Y is connected to the next stage. If the two buffers B_1 and B_3 have the same transfer function, the voltage at node Y is a replica of the voltage at node X, in spite of non-linearities and finite gain.

Fig. 7 - Low-voltage switched capacitor integrator implemented using switched unity gain amplifiers

Using the proposed approach we can easily implement also switch S_2. In fact, when B_2 is in high impedance state we can connect node Y to the required voltage, V_{AG} by using the switched buffer B_3. Of course, the voltage at node Y is not an exact replica of V_{AG} because of the non-linear response of the buffer. Nevertheless, this is not a relevant problem since it corresponds to an offset. The dumped integrator of Fig. 1, implemented with switched unity gain amplifier is shown in Fig. 8.

Fig. 8 - Low-voltage dumped switched capacitor integrator implemented with unity gain amplifiers

Buffer B_4, as well as OP-AMP A_2 can be switched off (with a slight delay with respect to B_2) to reduce power consumption. The proposed solution can easily be made fully differential.

Fig. 9 - Low-voltage sample and hold implemented using switched unity gain amplifiers

The sample and hold is another critical block in low-voltage applications. In this case, too, the switched unity gain amplifier can be used to solve the problem. Let us consider
the block diagram in Fig. 9: during the first clock phase the input signal \(V_{in} \) is replicated at node \(Y \) by buffer \(B_1 \) (with a non-linear transfer function) and stored on capacitor \(C_S \). Then, during the other clock phase, \(C_S \) is connected in feedback around the OP-AMP through buffer \(B_2 \). Assuming that the two buffers \(B_1 \) and \(B_2 \) have the same non-linear response, the voltage at node \(V_{out} \) is a precise replica of the input signal.

DESIGN OF SWITCHED UNITY GAIN AMPLIFIERS

Large common mode swing is the only critical requirement for a switched unity gain buffer. Fig. 10 shows a possible solution.

![Proposed switched unity gain amplifier](image)

Fig. 10 - Proposed switched unity gain amplifier

In order to verify the performances of the proposed architecture, we simulated the circuit in Fig. 7 (short-circuiting capacitor \(C_2 \)), using the proposed switched unity gain amplifier. Fig. 11 shows the obtained non-linearity error in the DC transfer characteristics from the input to nodes \(Z \) and \(X \). It can be observed that the error at node \(Z \) is already very small, and it almost disappears at node \(X \), confirming theoretical predictions.

![Simulated output signal of the low voltage sample and hold](image)

Fig. 12 - Simulated output signal of the low voltage sample and hold

CONCLUSIONS

In this paper we analyzed existing solutions and open problems concerning the design of low-voltage switched systems. Moreover, we proposed a new approach based on switched unity gain amplifiers, which seems to be the definitive solution for many applications. Finally, a practical implementation of the switched unity gain amplifier, showing excellent performances, was presented.

ACKNOWLEDGMENTS

The authors wish to thank project ESPRIT 8560 HEAR for support and Davide Molinari for some simulations.

REFERENCES

